

 Understand that in the next few lectures we will be looking at mitigating the effects of random error

Types and sources of erro

Types of error

Types and sources of erro

- Measurements, including those from sensors and probes, will always be affected by errors
 - Measurements are a scalar value
 - A position vector or velocity vector is simply a pair or triplet of scalars, with each entry affected by the error
 - The effect of these errors allow them to be generally classified as one of two types:
 - Random errors
 - Systematic errors

Random error
A random error is a deviation to either side of the precise measurement
 The errors will generally deviate around the true value That is the mean of such deviations has mean area
 That is, the mean of such deviations has mean zero It is correlated to the precision of the sensor or other device making the measurement
 The more precise the sensor or other device, the smaller the magnitude of the deviation
 Of course, the greater the precision, the higher the costs, including power and maintenance
 The spread of such random errors can be described statistically
 Another means of reducing the spread is to take multiple readings and average them 4 4 5

4

, **(**. 5

2

 Ill that for rounding,
 • Model errors are issues with your modeli

 if the digits beyond the last were exactly 50000···
 - Modeling errors tend to be systematic

 or the bits beyond the last were exactly 10000···
 - When you test or deploy your solutions,

. 🖆

10

- we selectively rounded up or down based on the parity of the least significant digit
- If this was not done, this would result in a systematic error
- With addition of decimal digits, this is less common
 - Consider, however adding two numbers 1 ≤ m, n < 2 in binary
 Each has the same exponent
 - The sum must be greater than or equal to 2
 - 1.0001010...00111110? + <u>1.0110101...100111101</u>?
 - 10.01111111...11011011?

9

modelling errors will likely reveal themselves

Failing to take into account vibrations and shielding sensors

- Modeling errors may, however, be random

from such vibrations

< [3

- This analysis will allow you to use less precise devices

Types and sources of erro

- Your designs should account for systematic error

- Our algorithms will mitigate the effects of random error

16

•

()